- O

Massachusetts = - Project MAC - .
Institute St Progress-Report VIii
of Technology i July 1970 to

o S ' July 1971

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

The work reported here was carried out within Project MAC, an
M.I.T. interdepartmental laboratory. Support was provided by:

The Advanced Research Projects Agency of the
Department of Defense, under Office of Naval
Research Contracts N00014-70-A-0362-0001,
-0002, and Defense Supply Service Contract
DAHC15 69 C-0347;

The Office of Naval Research under Contract
N00014-69-A-0276-0002;

The National Aeronautics and Space Adminis-
tration under Contracts NGR 22-009-393 and
NAS 12-2093;

The National Science Foundation, under
Contracts GJ-432 and GJ-1049.

The support for some of this work came from the M.I.T. Depart-
ments and laboratories that participate in Project MAC and
whose research programs are, in turn, sponsored by Government
and private agencies.

Reproduction of this report, in whole or in part, is permitted
for any purpose of the United States Government. Distribution
of this document is unlimited.

The cover and above pictures show displays of the
states of a three-dimensional cellular automaton.

(A cellular automaton is a type of parallel pro-
cessing computer compused of an array of identical,
simple processing units called cells.) 1In these
simulations of an array of three-state cells, state
2 is represented by an incomplete triangle, state 1
by a 1 and state 0 by the absence of a symbol. Such
generalized tessellation automata have been studied
at Project MAC and are described on page 9.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classilication of title, body of abetraci and indexing annotetion muet be entered when the overall report ie claesilied)

1. ORIGINATING ACTIVITY (Cororate author) 20. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
roject MAC 2b. GRcuP

None

3. REPORT TITLE

Project MAC Progress Report VIII July 1970 to July 1971

4. DESCRIPTIVE NOTES (Type of report and inciualve detes)

[Ahnual Progress

S. AUTHORIS) (Laet name, liret name, initiai)

Collection of reports from Project MAC participants
Profs. J. C. R. Licklider and Edward Fredkin

6. REPORT OATE 7e. TOTAL NO. OF PAGES 7b. NO. OF REFS

1 July 1971 235 (In Text)

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

N00014-70-A-0362-0001, -0002; DAHC 69
C-0347; N00014-69-A-0276-0002; NGR 22- MAC Progress Report VIIL
009~-393 and NAS 12-2093; GJ-432 and 9b. OTHER REPORT NO(S) (Any other numbers that may be
GJ_ 1 0 4 9 aseigned thie report)

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distri-
bution is unlimited.

12, SPONSORING MIiLITARY ACTIVITY

| None Advanced Research Projects Agency
3D-200 Pentagon

Washington, D.C. 20301

11, SUPPLEMENTARY NOTES

: »
Ad13. AesTRaCT

The broad goal of Project MAC is experimental investigation of new ways
in which on-line use of computers can aid people in their individual work
whether research, engineering design, management, or education.

This is the eighth annual Progress Report summarizing the research carrie
out under the sponsorship of Project MAC. Details of this research may
be found in the publications listed at the end of each section and in

Appendix A.

4 X§Y; wonos gellulﬁr Automata Education \

n—-Line Computers ime-Sharing Dynamic Modeling
Multiple-Access Computers Information Systems Programming Languages
Real-Time Computers Artificial Intelligence Computation Structures
Computer Networks Machine-Aided Cognition Automata Theory
Interactive Management Graphics Implicit Computation

DD .3 1473 (M.LT.) UNCLASSIFIED

Security Classification

R PO A st R OGS S v

R —— - s

/ i
. ¥
¥ i
7' ARTIFICIAL INTELLIGENCE'
AUTOMATA ' THEORY
=)
" CELLULAR AUTOMATA'
PROJECT MAC T, oy
PROGRESS REPORT VIII ey
JULY 1970 to ‘
JULY 1971 * COMPUTATION STRUCTURES

-

- - ’

COMPUTER SYSTEMS RESEARCH ’

e —

DYNAMIC MODELING, GRAPHICS AND NETWORKS

-

EDUCATION

¢ IMPLICIT COMPUTATIO&;_

-y

- INTERACTIVE MANAGEMENT SYSTEMS *

> MATHLAB |

t

| PROGRAMMING LANGUAGES

.

ST

TABLE OF CONTENTS

PERSONNEL ' iv
PREFACE Xi
I ARTIFICIAL INTELLIGENCE 129
A. Vision and Description 130
B. Appearance and Illusion 137
C. Analysis of Visual Scenes 148
D. Description and Learning 156
E. Knowledge and Generality 186
S
IT AUTOMATA THEORY 1l
A. Abstract Complexity Theory 3
B. Algorithms 4
C. Polynomial Evaluation 4
D. Sorting 4
E. Papers 5
III CELLULAR AUTOMATA 7
IV COMPUTATION STRUCTURES 11
A. Introduction 13
B. Petri Nets 13
1. State Machines 14
2. Marked Grapas 16
3. Free Choice Nets 16
4. Simple Petri Nets 19
5. General Petri Nets 19
C. Asynchronous cpeed-Independent Circuits 23
D. Base Language 26
E. Program Graphs 32
F. Translation of Block-Structured
Languages 44
G. Cycles in Structures 46
H. Computers and People 52
\Y COMPUTER SYSTEMS RESEARCH GROUP 57
A. Introduction 59
B. Dynamic Reconfiguration 59
c. 1I/0 Programming Language 60
D. Automatically Managed Multilevel Memory 60
E. Protection of Programs and Data 62
F. System Programming Language 62
G. Message Handling 64
H. Graphics Support 64
I. Other Activities 65
i
2 ik -

VI

VII

VIII

IX

TABLE OF CONTENTS (continued)

J. Acceptance of Multics
K. ARPA Network Status
1. Design Issues
2. Implementation
3. Experiments

DYNAMIC MODELING, COMPUTER GRAPHICS AND
COMPUTER NETWORKS
A. Introduction
B. Dynamic Modeling
1. Mediation and Intervention

2. The Library of Subroutines
3. The Library of Documents
4. An Extension of the LISP Language
5. Lexicontext
C. Computer Graphics
1. "Picture Framing"
2. Polyvision
3. Graphical Debugging
4. Elucidations
5. Visual Statistical Analysis
6. Imlac Displays
D. Computer Networks
l. Network Control Program
2. The Network at the End of the Year
EDUCATION

IMPLICIT COMPUTATION

A. Introduction

B. Exact-Inexact Machines and Approaches
C. Pressure-Flow Machines

D. Fundamental Work

INTERACTIVE MANAGEMENT SYSTEMS,
Introduction ‘

Set-Theoretic Data-Manipulation System

Management Information Systems

Studies of Access Control and Privacy

. Modeling of Organizations

SIMPL Project

HE OO

ii

66
67
67
68
69

73
75
76
76
78
79
80
81

82
82
83
83
84
84
85

85
85
86

89

93
95
96
98
99

103
105
105
106
107
107
109

g

R <. e

TABLE OF CONTENTS (continued)

X MATHALB

XI PROGRAMMING LANGUAGES

A.
B.
C.
D.
E.
F.
G.
H.
I.
J.
K.

APPENDIX
L3

Introduction

Canonic Systems

Power of Canonic Systems

Canonic Systems and Recursive Sets
Generalized Translator

Canonic Reduction Generator
Undecidability of Programming Languages
Measure Function of Programming Languages
Programming Systems Environment
Community Activities

Teaching

A
Project MAC Publications

iii

111

117
119
119
119
120
120
122
122
123
123
124
124

223
223

PROJECT MAC PERSONNEIL

JULY 1970 to JULY 1971

Administration
Prof. J. C. R. Licklider Director (to June 1971)
Prof. E. Fredkin Director
Prof. M. M. Jones Assistant Director (to June 1971)
D. C. Scanlon Administrative Officer
D. E. Burmaster Assistant Director for Student

Activities (to June 1971) and
Business Manager (to December

1970)
G. B. Walker Business Manager
P. Brandler Assistant Business Manager

(to September 1970)

R. J. Harman Assistant to the Director

M. S. Draper Administrative Assistant (to
June 1971)

M. K. Hadley Librarian (to December 1970)

B. H. Kohl Librarian

Academic Staff

Prof. F. J. Corbato’ Prof. J. C. R. Licklider
Prof. J. B. Dennis Prof. C. L. Liu

Prof. M. L. Dertouzos Prof. W. A. Martin

Prof. J. J. Donovan Prof. A. Meyer

Prof. A. Evans, Jr. Prof. J. Moses

Prof. R. M. Fano Prof. N. P. Negroponte
Prof. R. R. Fenichel Prof. S. S. Patil

Prof. E. Fredkin Prof. J. H. Saltzer
Prof. G. A. Gorry, Jr. Prof. J. F. Shapiro
Prof. F. C. Hennie, III Prof. J. Weizenbaum

Prof. M. M. Jones

Sl

b
Ek

T AN P 514D o TR Tl RN S T mf b o R o

Instructors, Research Associates, Research Assistants, and Others

R. G. Abramson F. E. Guertin W. C. Michels
V. Altman M. Hack P. L. Miller

D. Asthana M. Hammer R. N, Moll

A. Bagchi J. F. Haverty A. R. Monroe-Davies
R. Barquin I. T. Hawryszkiewycz M. L. Morgenstern
R. D. Bressler P. G. Hebalkar S. Murthy

D. Brown D. A. Henderson, Jr. B. G. Ong

G. G. Bruere-Dawson G. Holt H. F. Okrent

R. H. Bryan P. M. Hutchins P. Olson

R. Bryant J. Johnson R. C. Owens,

I. R. Campbell-Grant R. Johnston G. Pfister

D. D. Clark M. E. Kaliski K. T. Pogran

J. Coffman J. Kaplan D. H. Porges

J. D. DeTreville D. J. Kfoury C. Ramchandani
M. W. Dixon P. A. King L. J. Rotenberg
G. T. Dixon W. J. Klos J. E. Rumbaugh
R. S. Eanes D. Konig R. R. Schell

R. Earle B. Lester M. D. Schroeder
M. Edelberg J. P. Linderman J. I. Seiferas
R. J. Fateman M. P. Lum A. Sekino

R. J. Fleischer N. A. Lynch W. G. Shaw

J. Fosseen C. W. Lynn D. G. Sitler

P. J. Fox S. E. Madnick J. R. Sloan

F. Furtek R. Mandl B. J. Smith

R. C. Goldstein F. Manning J. R. Stinger
A. Gonzales M. J. Marcus R. H. Thomas

L. I. Goodman S. P. Mason H. M. Toong

I. G. Greif D. T. McDonald L. E. Travis

vi

c r» w w

o)

Instructors, Research Associates, Research Assistanis,
and Others (cont.)

J. Vilfan P. S. Wang T. A. Welch

M. Vogt S. A. Ward C. Ying

C. Walker A. S. Weinberg D. Yun

Undergraduate Students

F. Bauer R. M. Elkin N. V. Kohn

J. Baum R. Frankston D. M. Krackhardt

B. Bishop R. A. Freedman P. B. Kurnik

M. Berman D. E. Geer R. S. Lamson

H. Black M. R. Genesereth P. J. Leach

G. Bras R. S. Goldhor P. D. Lebling

A. Brenfleck P. A. Green C. K. Leung

Bricklin R. A. Guida J. C. Lind

Brodie P. H. Guldberg M. Liu

L. Brooks R. H. Gumpertz W. S. Mark

S. Broos J. H. Harris J. R. McCauley
. M. Brown C. A. Hatvany D. Misunas

H. Brown B. Hubbard S. Morrow

Carlson P. W. Hughett S. G. Morton

Y. Chan W. F. Hui W. Y. Ng

J. Chang J. E. Jagodnik P. A. Pangaro

M. Christie E. Kant G. Pavel

S. Cohen P. A. Karger R. Pincus

R. Cone R. M. Katz R. L. Prakken

G. Curley C. A. Kessel J. Quimby

E. Cutler H. J. Kim D. P. Reed

K. Daniels R. N. King J. L. Reuss

Davis E. Kohn K. Rhoades

vii
e

J.

L.

N.

Undergraduate Students (cont.)

Rondio

C. Rosen
L. Rosenberg
M. Rubin
D. Ryan
Saunders

J. Siegel

J. Ablowitz
J. Bailin

R. Banks

K. Bhushan
R. S. Bingham
Brandler

L. Brown

E. Burmaster
Byer

H. Campbell
0. Capps

A. Cohen

G. Cressey
C. Daley

D. Dunten

c. Englaﬁd
J. Feiexrilag

A. Friel

R.

N.

A.

J.

P. Silberstein
Singer

M. Solish
Stern

M. Stoney

M. Strayhorn

D. Tavares

DSR Staff

W. Galley

L. Gardner

C. Garman

P. Goldberg
P. Golden

M. Gunkel

J. Harman

P. Jarvis, III
K. Kanodia

H. Kohl

Lenot

F. Mabee

J. Martin

M. Metcalfe
W. Meyer, Jr.
C. Michener
I. Morris

E. Niles

viii

W.

E.

H.

L.

H. Thrasher

Tsiang

Tucker

E. wWidman

J.

Zak

E. Zippel

C.

Padlipsky
Peltan
Plummer
Reeve
Rothschild

Scanlon

Schroeppel

P.

J.

J.

Skinner
Spier

Strnad

Taggart

C.

Thurber, Jr.

Vezza

Voydock
Walker
Weaver
Webber

Wells

] S gy~

Support Staff
M. C. Amyot A. M. Garrity J. E. Pinella
M. E. Baker R. E. Golden, III R. Pinsley
V. M. Berardinelli D. Goldthrope R. Queens
M. A. Bizot M. J. Grano E. M. Roderick
M. F. Brescia M. K. Hadley A. Rubin
O. D. Carey J. A. Haley T. H, Seymore
L. S. Cavallaro L. J. Haron K. K. Simpson
N. Chen A, J. Hicks A. H, Speare
M. T. Cheney R. F. Hill J. Stavrinos
S. J. Cohn M. A. Hoer M. K. Stephens
M. J. Connell D. L. Jones J. E. Tamayo
J. Considine D. Kontrimus A. G. Testa
S. Daise E. T. Moore E. B. Ulman
L. K. Denison B. A. Morneault M. W. Webber
C. P. Doyle E. F. Nangle L. E. Yaple
C. Falls L. G. Pantalone F. L. Yost
L. L. Gammell K. W. Pierce K. Young

Guests

H. Adler P. Eisenberg Prof. A. Fleisher

Prof. J. Berger Prof. J. I. Elkind Prof. G. Iazeolla

ix

184 T s e e E e =

e—— TR RPN AP,

ADMINISTRATION

Academic Staff

Prof. J. C. R. Licklider Director (to June 1971)
Prof. E. Fredkin Director
Prof. M. M. Jones Assistant Director (to June 1971)

Administrative Staff

D. C. Scanlon Administrative Officer

D. E. Burmaster Assistant Director for Student
Activities (to June 1971) and
Business Manager (to December

1970)
G. B. Walker Bustiness Manager
P. Brandler Assistant Business Manager (to
September 1970) 7
R. J. Harman Assistant to the Director
M. S. Draper Administrative Assistant (to
June 1971)
M. K. Hadley Librarian (to December 1970)
B. H. Kohl Librarian

Research Staff

P. M. Gunkel

Research Assistant

F. Manning

Support Staff

M. C. Amyot E. T. Moore

L. S. Cavallaro L. G. Patanlone
M. J. Connell K. W. Pierce

J. Considine R. Pinsley

L. K. Denison E. M. Roderick
L. L. Gammell K. K. Simpson
J. E. Goss A. H. Speare

N. P. Greeley J. Stavrinos

D. Kontrimus E. B. Ulman

Xi

P | e B 5 o By s

PREFACE

Project MAC was begun as an interdepartmental laboratory at the
Massachusetts Institute of Technology in early 1963. The initial
research and development goals were concerned with Multiple- 3
Access Computer systems, Machine-Aided Cognition, and, in 1
general, the interaction between Men And Computers. The name ;
"MAC" is an acronym for each of these goals. 4

In the year ending June, 1971, there were 320 persons associated
with MAC. They included: 21 faculty members mainly from the
Departments of Electrical Engineering and Mathematics and from
the Alfred P. Sioan School of Management; 105 staff members

(DSR staff and Support Staff), 182 students (Undergraduvate

and Graduate) and 12 Guests.

Early in its history, MAC conducted extensive experimentation
with and development of the Compatible Time-Sharing System
(cTSsS), an early large-scale, multiple-access computer system.
More recently we have continued our research on the MULTICS
system, which came into operation 2 years ago. MULTICS is a
conceptually advanced multiple-access system that is capable

of straightforward and smooth expansion into an extremely large
and capable facility.

The second of MAC's original objectives, machine-aided cognition,
has recently made very significant progress. We feel that
recent MAC/AI research represents an enormous conceptual

advance. In December, 1970 the Artificial Intelligence group
pecame an independent MIT laboratory; Professors Marvin Minsky

and Seymour Papert are Co-directors. Important and useful L
collaboration between MAC and the AI Laboratory is continuing.

In May, 1971, Professor J. C. R. Licklider stepped-down from

the Directorship of MAC to devote full time to his own research
specialties - Dynamic Modeling, Computer Graphics, and Computer
Networks ~ and Professor Edward Fredkin assumed the Directorship.
Miss Dorothea Scanlon continued as Administrative Officer, and
Mr. Gary Walker remained as Business Manager.

In anticipation of a major research thrust in a new direction,
MAC has consolidated and strengthened various groups.
Educational Applications; MacAIMS; Programming Linguistics/
Extensible Languages; and Programming Linguistics/ Formal
Systems have been terminated as separate groups. A policy of
more decentralized control by the group leaders has been
instituted.

Although the specific goals of MAC for the next few years

are now the subject of much thought and discussion, an emerging
consensus seems to be that we are interested in the problems of
imbedding knowledge in the computer and in enabling that
knowledgeable system to play a key role in generating programs
and other forms of solutions to problems. We feel that, armed
with knowledge, a system will be able to better communicate
with its users. We give this field the name "Automatic

xiii

Programming".

This progress report outlines the research carried out in the
year ending June, 1971. The report is subdivided into 11
sections corresponding to the research groups in Project MAC.
The technical reports and memoranda of Project MAC are listed
in Appendix A, and references to the exXternal publications
resulting from the research appear in the bibliographies at
the end of each section.

During the past year, the core program of Project MAC and the
Artificial Intelligence Group were supported, as heretofore, by
the Information Processing Techniques Directorate of the
Advanced Research Projects Agency (ARPA). Individual projects
were funded by several other agencies: research in extensible
languages, National Aeronautics and Space Administration;
interactive problem-solving and decision-making, Office of Naval
Research; dynamic modeling, Behavioral Sciences Directorate of
ARPA; programming generality, National Science Foundation.

Edward Fredkin

Cambridge, Massachusetts

Xiv

AUTOMATA THEORY

Prof. F. C. Hennie, III

Academic Staff

Prof. C. L. Liu
Prof. A. Meyer

Instructors, Research Assoclates, Research Assistants and Others

A. Bagchi N. A. Lynch

D. Brown R. Mandl

G. G. Bruere-Dawson R. N. Moll

M. ZEdelberg B. G. Ong

M. M. Hammer B. J. Smith

P. M. Hutchins B. J. Vilfan

D. J. Kfoury C. Ying
Support Staff

M. E. Baker

V. M. Berardinelli

S. J. Cohn

II. AUTOMATA THEORY

Abstract complexity theory, which has been a central topic of
research in the Automata Theory Group in the past, has become a

with contributions from nearly three dozen authors in the U.s.
and the Soviet Union. As reported belcw, some further work in
this area was carried out during this last year, and two doc-
toral theses are still in progress. However, the basic phenom-
ena associated with the classification of computations according
to their time and space requirements are now rather well under-
stood, and further refinements in the abstract theory are likely
to be of diminishing interest to the computer scientist. Major
interest within the group has now shifted toward combinatorial
and statistical analyses of a variety of algorithms commonly
arising in computation. The goals of work in this area are to
develop methods for designing good algorithms for problems of
practical interest, and to devise techniques for verifying the
optimality of algorithms. The work described below on matrix
multiplication, polynomial evaluation, and sorting represents
the beginnings of this more practical approach to the study of
algorithms.

A. Abstract Complexity Theory

One of the basic theorems about computable functions is that,
for every computable function t, there exists a zero-one valued
computable function ¢ that takes more than time t to evaluate.
More precisely, any program that evaluates c requires at least
t(x) steps to compute c(x) for all but finitely many values of
Xt

In order to appreciate the significance of such a theorem, one
needs additional information (not provided by the usual proof)
about how many values of the function ¢ are easy to compute,

It might be the case that the functions that are difficult from
the point of view of complexity theory -- i.e., functions that
are time-consuming to cempute on the average -- are actually
easy for all small arguments, say all arguments less than 10100,
In fact, any zero-one valued function can be computed rapidly
for any given finite set of arguments by simply storing the
pertinent values of the function in a table. A genuinely com-
plex function should have the property that any program that
computes it can run rapidly on only as many inputs as can

be stored in a table whose size equals that of the program.
Such functions are constructed and studied in a paper by

Prof. A. Meyer (jointly with E. M. McCreight) .

Properties of program size are considered in several further
papers written this year. One of th.: motivations for the study
of program size has been to provide a quantitative understanding
of the relative convenience of different programming languages
by comparing the sizes of the programs needed to implement the
same computation in different languages. A fairly general
theorem recently proved by Prof. Meyer shows that a slight in-
crease in the set of instructions of certain kinds of program-
ming languages can lead to enormous economies in program size.

A related study of formal grammars by Meyer (jointly with Prof.

PRECEGING FASE BLANK

AUTOMATA THEORY

M. J. Fischer) derives quantitative bounds on the improvement

in simplicity of definition that can be achieved by using pow-
erful grammars such as context-sensitive or context-free gram-
mars to define simple sets such as reqular or even finite sets.

B. Algorithms on Graphs

The results on matrix multiplication and transitive closure of
graphs mentioned in last year's report have been strengthened.
Robert Mandl has shown that the time required to find the tran-
sitive closure of a directed n-node graph is within a constant

algebraic methods for multiplying real matrices can be modi -
fied to apply to Boolean matrices, this result yields the best
transitive closure algorithm known to date.

Our hope that a graph-theoretic approach to Boolean matrix
multiplication might enable us to generalize fast matrix mul-

tiplication techniques has not yet been fulfilled, but we
continue to believe that this approach is promising.

C. Polynomial Evaluation

The evaluation of rational functions by sequences of algebraic
operations represents one of the few areas where techniques
have been developed for establishing the optimality of algo-
rithms. Larry Stockmeyer, together with Professors Fischer,
Meyer and M. S. Paterson, has derived a lower bound of;ﬂn on
the number of multiplications required to evaluate any degree
n polynomial with rational coefficients, and has shown that
this lower bound is nearly achievable.

D. Sorting

B. J. Smith has been investigating sorting networks composed
of two-input, two-output comparators. Since each comparator
can be modeled as a three-state finite-state machine, the
sorting network as a whole can also be viewed as a finite-
state machine. When implemented in hardware, such networks
can be used as high-speed sorters Or message-switching de-
vices. Alternatively, a sorting network can be realized by

a computer program that is naturally suited to parallel evalu-
ation.

Smith has been studying the minimum number of comparators re-
quired to construct an n-input, n-output sorting network. He
has discovered that a network of comparators actually sorts if
and only if the network has

n
> il S(n,1i)
i=0

States that are reachable from the starting state, where

S(n,i) is & Stirling number of the second kind. Furthermore,
he has determined that no two distinct reachable states in the
network are equivalent. These results suggest that a knowledge

- »o“ﬁdm:x_

AUTOMATA THEORY |

of the number of internal network configurations that cannot
result from any network input may yield bounds on the number
of states "wasted" in building a network and in this way yield
bounds on the number of comparators required.

E. PaEers

During the year, several members of the group have prepared
papers for forthcoming meetings and journals.

For the Twelfth Annual Switching and Automata Theory Symposium
(October 1971):

1) Fischer, M. J. and A. R. Meyer, "Boolean Matrix Multi-
plication and Transitive Closure".

2) Meyer, A. R. and M. J. Fischer, "Economy of Description
by Automata, Grammars, and Formal Systems".

For the International Symposium on the Theory of Machines and
Computations (August 1971):

Meyer, A. R. and E. M. McCreight, "Computationally Com-
plex and Pseudo-Random Zero-One Valued Functions".

Accepted by the Journal of Symbolic Logic:

Meyer, A. R. and P, C. Fischer, "Computational Speed-Up
by Effective Operators".

Accepted by Zeit. f. Math. Log. und Grund. der Math.:

Meyex, A. R, and D. M. Ritchie, "A Classification of the
Recursive Functions".

Publication 1970-1971

Ying, C. and A. K. Susskind, *"Building Blocks and Synthesis
Techniques for the Realization of M-ary Combinational Switch-
ing Functions", Proceedings of Symposium on Theory and Appli-
cations of Multiple-Valued Logic Design, State University of
New York at Buffalo, May 1971.

* Non-MAC author.

RN (UGS W A A N SR A TR e N - -

CELLULAR AUTOMATA

Prof. E. Fredkin

DSR Staff
E. R. Banks

Undergraduate Students

W. S. Mark

PRECEDING PASE BLAMK

DA X S S L5 e

III. CELLULAR AUTOMATA

A Ph.D. thesis by Roger Banks describes an investigation of a
class of parallel processing computers called Cellular Automa- .
ta. A cellular automaton consists of an array of simple, iden-
tical finite-state machines called cells. Each cell communica- !
tes with only its immediately surrounding cells.

The chief results of the thesis include showing that a two-
dimensional array of two-state cells, each of which communicates
with its four-edge neighbors, can perform any (computable) com-
putation, i.e., it can simulate a universal Turing machine.

A configuration is a specification of the states of all the
cells in some area of the iterative array. Another result
described in the thesis, is the existence of a self-reproducing
configuration in an array of four-state cells with each cell
communicating with its four-edge neighbors. This was a reduc-
tion of four states from the previously known eight-state case.

Further work by Banks and more recently by William Mark has
concerned the development of a programming system for the
simulation and display of very general cellular automata in
one, two and three dimensions with various neighborhoods,
transition rules, numbers of states, etc.

Publication 1970-1971

Banks, Edwin R., "Information Processing and Transmission in
Cellular Automata", Ph.D. Thesis, Dept. of Mechanical Engineer-
ing, January 1971, also MAC TR-81, AD 717-951.

PRECEDING PAGE BLANK

e N Iy LI I ey S— e i e = PRI NG PRI g T T IR T

COMPUTATION STRUCTURES

Prof. J. B. Dennis

Academic Staff

Prof. R. M. Fano Prof. S. S. Patil

Instructors, Research Associates, Research Assistants and Others

I. R. Campbell-Grant B. Lester

J. Coffman J. P. Linderman
J. Fosseen M. J. Marcus

P. J. Fox C. Ramchandani

F. Furtek L. J. Rotenberg
I. G. Grief J. E. Rumbaugh

M. Hack D. G.Sitler

I. T. Hawryszkiewycz W. C. Walker

P. G. Hebalkar
Undergraduate Students

H. J. Kim
DSR Staff

W. W. Plummer

Support Staff

B. A. Morneault A. Rubin

- PRECEGING PAGE BLANK |

Ll

e e s e RSO
A e - .

IV. COMPUTATION STRUCTURES

A. Introduction

The Computation Structures Group is concerned with the study
and analysis of fundamental issues arising in the design and
construction of general-purpose computer systems. The re-
search enccmpasscs hardware and software aspects of computer
systems, and much of the work has contributed toward establish-
ing a common conceptual basis for both aspects. The accom-
pPlishments of the past year are pPrincipally in two areas:

One is the theoretical study of Petri nets as a model for
asynchronous systems of interacting parts, and the realization
of Petri nets in the form of speed-independent modular switch-
ing systems. The goal of this work is to build a sound theory
to serve as the basis of a new methodology for the design of
asynchrorous digital systems. The second area is the evolu-
tion of a base program language. This effort is expected to
lead to a practical formal definition scheme for source pro-
gramming languages and will provide a sound basis for the
functional design of advanced computer systems.

B. Petri Nets

As reported last year, we have found Petri nets to be an ele-
gant formalism for representation of concurrencCy in processes
and for studying asynchronous systems. Petri nets stand out
in relation to other schemes because of the preciseness and
ease with which they can express parallel acitions, resolution
of conflicts, and interaction among processes. Moreover, they
have the simple structure that .s essential for analytic
study. Simple as they are in their structure, study of the
general class of Petri nets is difficult because of the var-
iety of situations they can represent. A study of subclasses
of Petri nets which represent simpler situations is a necessary
step toward understanding the general class of Petri nets, and
such study has been an important objective of the group in the
past year. We have identified several subclasses of interest
and have found useful results about them. Before discussing
these results, we present a brief introduction to Petri nets
and the subclasses of interest.

A Petri net [1,2] is a directed graph which can have two types
of nodes, namely transitions and places, where the directed
arcs can connect only transitions to places and places to trans-
itions (Fig. 1l.). 1In drawing the graph, places are represented
by circles and the transitions by bars. The places from which
arcs are incident on a transition are called input places of
the transition, terminate are called the output places of the
transition. Each place can have markers (sometimes called
tokens) in them. A transition having markers in all of its
input places is said to be enabled. Only enabled transitions
can fire; in the act of firing, the transition picks one

marker from each of its input places and puts a marker in each
of its output places. The marking distribution in the net
changes as transitions fire, and each new marhing distribution
makes firing of other transitions possible. With regard to

the firing of transitions, an important situation is when

PRECEDING PAGE BLANK

13

P =

COMPUTATION STRUCTURES

JENG

N

r .
. g

FIG.1. A PETRI NET.

transitions share some input places. When two transitions
which have a common input place are both enabled but the
common input place has only one marker, the transitions are
said to be in conflict because the firing of any one of the
transitions disables the other. A net is said to be safe if
no plece in it will ever have more than one marker at a time.
A net is said to be live if at no time in the operation of the
net will any transition be ruled out as a transition that may
fire some time in the future. Conflict, safety, and liveness
in a net depend on the initial marking distribution. There
are, however, some structural restrictions which can guarantee
some of these properties. By structural restrictions, we mean
restrictions with regard to the arrangements of transitions
and places such as the restriction that transitions not have
input places in common. The restrictions we use below to
define subclasses of Petri nets are purely syntactic as they
define local constraints on the arrangements of transitions
and places. The subclasses are:

1) State Machines (SM)
2) Marked Graphs (MG)
3) Free Choice Petri Nets (FC)
4) Simple Petri Nets (SN)

The restrictions that define these subclasses are given below.
The Petri nets without any restrictions will be referred to
as general Petri nets to emphasize this fact. The following
text should be read together with Figures 2 and 3. Figure 2
shows what kind of local configurations of transition and
Places are permitted for each subclass of nets.

l. State Machines (SM) -- A state machine is a Petri net in
which every transition has exactly one input place and exactly

14

TITRrTewR

&y

——

L

COMPUTATION STRUCTURES

LOCAL CONFIGURATIONS

STATE MACHINES

EVERY TRANSITION HAS
EXACTLY ONE INPUT PLACE
AND EXACTLY ONE
OUTPUT PLACE

f PERMITTED

NOT PERMITTED

MARKED GRAPHS

EVERY PLACE HAS
EXACTLY ONE INPUT
PLACE AND EXACTLY ONE
OUTPUT PLACE

<

FREE CHOICE NETS

EVERY ARC FROM APLACE
TO ATRANSITION IS EITHER
THE ONLY OUTPUT OF THE

PLACE OR THE ONLY INPUT
TO THE TRANSITION

o LAY | AY

SIMPLE NETS

EVERY TRANSITION HAS
AT MOST ONE SHARED
INPUT PLACE

PETRI NETS

NO SUCH
RESTRICTION

9,
W
F9¢

FIG. 2.

THE SUBCLASSES OF PETRI

15

NETS.

COMPUTATION STRUCTURES

one output place. The state machines being discussed here are
identical to the state machines of automata theory in their
structure, (Fig. 4).

2. Marked Graphs (MG) -- A marked graph is a Petri net in
which every place has exactly one input transition and exactly
one output transition. Thus the restriction in this case is
similar to the one for state machines but it applies to places
instead of transitions. State machines have been studied ex-
tensively but the recognition of marked graphs and the study
of their properties is recent. Genrich [3] started the study
of marked graphs and his ideas led to a detailed study by

Holt and Commoner [4]. The mathematics relating to marked
graphs is fairly well understood now through these studies.

In our previous report we showed a direct relationship between
the elementary asynchronous modular control structures devel-
oped by us and the marked graphs. The study provided a simple
way for obti.ning hardware structures that mimic marked graphs,
and also a m=thod for determining if a control structure is
free of any hangups. This year the study has been carried
further to include a broader class of nets called free choice
nets. The free choice nets and results relating to them are
described below.

3. Free Choice Nets -- A Petri net in which every arc from a
place to a transition is either the only output of the place
or the only input to the transition is said to be a free choice
Petri net. This condition on Petri nets is the same as re-
quiring that when an input place is shared by some transitions,
those transitions have no input places other than the one
which is common to them. Thus when a marker arrives in the
shared place, all of the transitions which share that place

are enabled, and one of them may be freely chosen to fire.

When the movement of a marker is regarded as flow of control,
the situation just described represents a free choice with
regard to where control flows from the shared place -- thus

the name free choice nets. Free choice nets include both the
state machines and the marked graphs.

A free choice Petri net can be used to represent the flow of
control in a program as shown in Fig. 5. Ir this figure, the
shared place x together with transitions T and F represent a
decision element -- the if statement in the program. The
direction in which control flows from place X is not arbitrary
-- it conforms to the outcome of evaluating the predicate
associated with the if statement. To the net considered alone
the decision about the direction of flow is external to it be-
cause it is based on information outside the net; the infor-
mation flows into the net by way of the interpretation which
associates a certain if statement with the free choice trans-
itions in the net. 1In the study of Petri nets and also in the
studv of cocmputation schemata, it is important to distinguish
what information is a part of the net and wlat is external to
it.

Some important results about free choice nets have been found
recently by Commoner of Applied Data Research and Hack of the

16

FIG. 3.

COMPUTATION STRUCTURES

FC

PN

THE INCLUSION RELATIONSHIP AMONG
THE SUBCLASSES OF PETR! NETS.

STATE MACHINE AS A STATE MACHINE AS A

PETR! NET

s /B S e A O LSO i == R e

STATE DIAGRAM

FIG.4. STATE MACHINES,

17

T —— i

COMPUTATION STRUCTURES [

CHAS G E AT HER

BEGIN

a: FORK

nNe—n+i B: m=— mxi

y:JOIN JOIN y

i -— -]

IF i>1 THEN GOTO q

EN

FIG. 5. FLOW OF CONTROL IN A PROGRAM. 3/

18

COMPUTATIUN STRUCTURES

Computation Structures Group. Commoner has found necessary and
sufficient conditions for liveness and safety of a free choice 1
net, and Hack has found conditions for the existence of a live
and safe marking for a net. A live net is one in which the
activity can continue indefinitely without any hangup. Hangup
is a condition in which a part of the net enters into a state

of inactivity from which it cannot recover. In our common
experience a hangup for a machine is an unfortunate state in
which its activity subsides and it fails to respond to stimu-
lation because of some hopeless jam inside it. Safety on the
other hand means that no more than one token will be in any
place at any time. This is important where the places repre-
sent objects that cannot hold more than one of the things
represented by the tokens. When places represent registers

in a digital computer, safety means that a new piece of data
will not be placed in a register until the previous one has

been used up. In that way mixup of data can be avoided. Hack's
work thus provides a way to determine if an uninterpreted
parallel program which can be expressed as a flow diagram has

a starting condition for which it will continue to operate
without any hangups or mixups.

cenw

4. Simple Petri Nets -- A Petri net in which no more than one
input place of any transition is a shared input place is called
a simple Petri net; a transition in a simple Petri net may
have any number of input places but at most one of those places
may be an input place of some other transition. The class of
simple Petri nets properly contains the free choice nets.

There are cituations which can be represented by simple Petri
nets but not by ftree choice nets. Figure 6 shows such a situa-
tion which arises in representing flow of control in coordin-
atirg processes. An important aspect of simple nets is that
they are able to represent interprocess coordination such as
implemented by Dijkstra's semaphore primitives. A study of
simple Petri nets has led to an understanding of the limita-
tion and capabilities of the semaphore primitives. Details

of this study are presented in the next section.

5. General Petri Nets -- The class of Petri nets without any
of the restrictions is called general Petri nets. There are
many Petri nets in the class of general Petri nets for which
there are no equivalent nets in the subclasses defined. 1In
Particular, a Petri net which cannot be transformed into a
Simple net arises in the study discussed below.

Recent work by Patil [5] has shown some interesting facts
about the semaphore primitives of Dijkstra [6] by establish-
ing a correspondence between the flow of control in inter-
acting processes and Petri nets. 1In Fig. 6, three processes
coordinate their activities with the help of semaphores.

The Petri net for each individual p.rocess is obtained by
representing each instruction by-a transition, connecting
these transitions into a chain by means of places to indicate
the flow of control in that process, and placing a token

in the input place of a transition to indicate the present
site of control. The Petri net for a collection of inter-
acting processes is obtained by interconnecting the nets

19

COMPUTATION STRUCTURES

PROCESS
P Py P3
| x=— x4+ x 5 u=—uxu 9 P[Sy.]
2 P[sy] 6 P[s,] 10 z= z+y
3 yex 7 y-—u I v [sy]
4 VvI[s,] 8 Vv [Sy] GOTO 9
GOTO | GOTO 5 INITIALLY SEMAPHORE
Syl AND S,i=0
a)

b)

FIG.6. FLOW OF CONTROL IN PROCESSES AND THE
CORRESPONDING SIMPLE PETRI NET.

20

_ﬂ; e *—W "

SR i vy - ’ o . A~ ——h =

COMPUTATION STRUCTURES

for individual Processes by means of places which repre-

sent the semaphores: a transition that represents an instruc-
tion P[S] is provided an input from the blace that represents
semaphore variable S, and each transition that represents an
instruction V([S] feeds into the place representing the sema-

corresponding to the fact that the control in a process can

The above method of obtaining Petri nets for flow of control
applies only to processes which do not have conditional state-
ments. The Petri nets for such processes completely describe
the flow of control. Moreover, these nets are simple Petri
nets because the only transitions which can have any shared
input places are the ones which correspond to the P[] instruc-
tions and each of these transitions has only one shared input
place.

If there are any conditional instructions, they would have to
be represented by two transitions, one for the outcome true

and the other false, and these transitions would share the
input place so that for any particular execution of the con-~
ditional instruction, only one of the transitions would fire.
Which of the two transitions fires depends on the value of the
Predicate associated with the conditional instruction. Since
this information is external to the net, the net only partially
describes the flow of control in this case.

cribing their interaction, but our study has uncovered the
surprising fact that the semaphore primitives are inadequate
for this purpose. This fact is brought out by a study of a
problem called the 2-out-of-3 problem which is discussed be-
low.

The 2-out-of-3 problem can be explained in the framework of a
message decoder. When viewed as a hardware device, the de-
coder has three input wires colored red, yellow and green, and
three output wires called X, Y and Z. There are three diff-
erent messages which can be sent to the decoder. Message X
consists of signals on the red and yellow wires; message Y
consists of signals on the red and green wires; and message 32
consists of signals on the yellow and green wires. The decoder
can be thought to have three processes inside it, one for each
meéssage. Process X waits for message X and responds on out-
put wire X; the other processes are defined similarly. We

21

COMPUTATION STRUCTURES

s

oo

FIG.7. THE 2-OUT-OF-3 NET.

22

T DAY oo

COMPUTATION STRUCTURES

signal is accepted by decrementing the semaphore count by 1.
The question is: Can the three processes which decode the
messages be so coordinated by semaphore primitives that the
decoder functions correctly? Since each individual process
just waits for the associated message to arrive, we insist
that the processes not use any conditional instructions.
Therefore, instead of asking the question in the form above,
we ask: Is there any finite collection of processes not using
conditional instructions that can specify the operation of the
decoder with the help of the semaphore primitives? The answer
to this question is negative.

The reason for the negative answer is that the decoder repre-
sents a net called 2-out-of-3 net, which is not a simple Petri
net, and it has been possible to show that this net cannot be
transformed into an equivalent simple Petri net [5]. Thus it
is clear that the semaphore primitives need the help of condi-
tional statements to carry out coordination among processes,
(Fig. 7.). It should be recalled that the very purpose of
introducing the semaphore primitives was to obtain a more
direct means for coordinating processes and to do away with
sneaky use of conditional statements to perform cocrdination.
With the aid of conditional statements one can implement
coordination of processes by such simple-minded schemes as
repeated testing of a variable until it becomes,say, 1. Such
schemes can implement coordination, but the implementation is
very wasteful of computer resource because there is no limit
to the number of times the variable may have to be checked.
‘The semaphore primitives rectify this defect, but they are not
able to implement all coordinations by themselves. Thus the
question is, whether together with conditional statements they
can express all conceivable coordinations without paying the
price of unbounded computation. The study has shown that the
answer to this question is affirmative. i

At the root of the shortcomings of the semaphore primitives is
the fact that a P[] instruction operates on only one semaphore.
Unfortunately, a generalized instruction such as P[S1,...,Sk],
which simultaneously operates on semaphores S1s «++, Sk, cannot
be always expanded into a sequence of instructions Plshl ; saan
P[Skl. But the generalized instruction can be expanded in

terms of P[S;, S2] instructions each of which ouperates on two

semaphores. Even though P[S,, S,] is adequate, one may wish
to allow more arguments in i%Str ctions for the sake of effi-

ciency.

C. Asyrchronous Speed-Independent Circuits

A digital system is often built as two interconnected parts --
a data flow structure containing registers, functional opera-
tors and data paths, and a control structure that generates
signals that initiate actions by operators in the data flow
structure. :

In synchronous systems the operators may begin action only at
certain time instants determined by a central generator of

23

W T P ———

COMPUTATION STRUCTURES

clock signals. The design of the control structure involves
choosing the appropriate number and duration of clock intervals,
and realizing a switching circuit that routes the clock signals
to operators as required to implement the system's function.

In an asynchronous control structure,each operator in the data
flow structure sends an acknowledge signal to the control
structure to indicate that action by the operator has been
completed. The acknowledge signals from operators are used
directly in the control structure to initiate action by oper-~
ators that become eligible for execution. In this way, initia-
tion of an operator is delayed only until completion of those
actions upon which correct functioning of the operator de-
pends. No special generator of timing signals is used, the
timing of system operation being determined by the durations
of actions by the operators.

If the control structure of an asynchronous system will func-~
tion correctly regardless of delays in its componerits and
their interconnecting wires, the control structure is called
a speed-~independent circuit.

A system described by a logic diagram for a synchronous reali-
zation of it is both overspecified and underspecified. The
particular choice of clock instants is irrelevant to the func-
tion performed by the system, but is essential for the diagram
to have any meaning. vYet understandings between the specifier
and implementer about timing of actions are necessary for
unambiguous interpretation of the description. These under-
standings are not usually represented in a logic diagram.

That a synchronous system is overspecified makes understanding
or altering its function difficult; that it is underspecified
makes design verification impossible in the absence of over-
simplifying assumptions. The description of a system as a
speed-indepedent circuit does not suffer these problems. Two
parts of a speed-independent circuit are interconnected if,
and only if, some action by one part is dependent on comple-
tion of some action by the other.

This reasoning shows that speed-independent implementation of
digital systems is of particular interest when one desires
assurance that a paper design will yield a correctly function-
ing system when translated into hardware. Speed-independent
implementation is also attractive where a system is built from
several interacting parts (there are no clocks in the subsys~
tems to be synchronized), or where a system has much concurrent
activity (which could only be slowed up by synchronizing action
to common clock signals). Computer systems developed in the
future are likely to have all of these characteristics.

The group has been studying schemes for representing systems

so that conversion of the description into a speed~independent
realization may be accomplished by a mechanical procedure

with a quarantee that the resulting hardware will function
correctly according to the description. In this way, the
onerous task of debugging the hardware (as opposed to debugging
the system description) would be largely eliminated. 1In

24

COMPUTATION STRUCTURES

particular the faults that appear in hardware systems because
of misunderstandings about the timing of signals would be
avoided.

We are considering two classes of speed-independent circuits
based on two assumptions regarding the origin of delays which
must not affect correctness of system operation. Both classes
of circuits are interconnections of primitive modules which
may be individual gates or specific circuits realized in turn
by the interconnection of simpler modules or gates.

In a type 1 circuit we assume that all interconnecting wires
are sources of arbitrary delays. Thus a signal sent out by
one module to two others may reach one module arbitrarily
earlier than the other. 1In a type 2 circuit we assume that the
output of a module may be delayed arbitrarily, but when an
output of a module changes, the change is observed immediately
by all modules to which the output is connected. The type 2
assumption is less restrictive, and is appropriate for cir-
cuits in which delays on interconnecting leads are negli-
gible compared to delays within gates. This is normally the
case within a semiconductor chip, for example. The more
general type 1 assumption is appropriate for interconnections
between standard parts where the designer does not know the
mechanical arrangement of the parts.

A principal goal of our work is to find a finite set of prac-
tical modules with which it is possible to implement any
digital system as a type 1 speed-independent circuit. In
last year's report we described a collection of control
modules adequate to implement any marked graph as a type 1
circuit. The complete set of control modules are also ade-
quate for implementing free choice and simple Petri nets in
the form of type 1 speed-independent circuits, and are con-
venient for defining control structures for complex digital
systems.

The C-element of Muller [7] is a very important gate type for
the construction of control modules. We have shown that the
C-element cannot be implemented as a type 1 interconnection
of AND, OR and NOT gates. 1In fact, there is very little

that can be done by a type 1 speed-independent circuit using
only AND, OR and NOT gates. These results are inciuded in a
paper by Dennis and Patil [8). Since several basic control
modules have type 1 realizations using NOT gates and C-elements,
these results emphasize the importance of the C-element as a
fundamental gate type for speed-independent circuits. More
recently, Fred Furtek has defined a complete set of basic
modules for the realization of general Petri nets as type 1
speed-independent circuits.

Our success in applying speed-independent design to control
Sstructures for digital systems has led us to investigate the
applicability of the concept to complete Jigital systems. As
an experiment: Dennis and Plummer developed a design for a fast
counter that could be sampled repeatedly without interfering
with continuation of counting. The design is a type 1

25

COMPUTATION STRUCTURES

interconnection of as many identical stages as desired, each
stage being a type 2 circuit using OR-gates, NOT-gates and C-
elements. Commands to 'count' or to 'sample’' flow through the
stages of the counter from the least significant end changing
or reading the bit held by each stage. In this way the speed
of the counter is independent of the number of stages. The
details of the design have been reported [8]. Bill Plummer de-
signed and constructed an arbiter module to resolve conflicts
between 'count' and 'sample' commands, and has prepared a
paper on his work [9].

D. Base Language

The Group is working toward the definition of a common base
language that could serve as a target representation for pro-
cedures translated from a variety of practical source languages,
for example, FORTRAN, ALGOL and LISP. By specifying a formal
interprete: for the base language and giving a precise des-
cription of the translation of source programs into base lan-
guage programs, we would have a complete scheme for the formal
definition of the semantics of programming languages in terms
of a common set of semantic notions (those of the base lan-

guage) .

The motivation for this work is the design of computer systems
in which the creation of correct programs is as convenient and
easy as possible. A major factor in the convenient synthesis
of programs is the ability to build large programs by combin-
ing simpler procedures or program modules, written independent-
ly, and perhaps by different individuals using different source
languages. This ability of a computer system to support
modular programming is called programming generality [10,11].
Programming generality requires the communication of data among
independently specified procedures,and thus that the semantics
of the languages in which these procedures are expressed must
be defined in terms of a common collection of data types and a
common concept of data structure.

We have observed that the achievement of programming generality
is very difficult in conventional computer systems, primarily
because of the variety of data reference and access methods
that must be used for the implementation of large programs

with acceptable efficiency. For example, data structures that
vary in size and form during a computation are given different
representations from those that are static; data that reside
in different storage media are accessed by different means of
reference; clashes of identifiers appearing in different
blocks or procedures are prevented by design in some source
languages, but similar consideration has not been given to the
naming and referencing of cataloged files and procedures in the
operating environment of programs. These limitations, on the
degree of generality possible in computer systems of convention-
al architecture have led us to study new concepts of computer
System organization through which these limitations on pro-
gramming generality might be overcome.

In this effort, we are working at the same time cn developing

26

COMPUTATION STRUCTURES

the base language and on developing concepts of computer arch-
itecture suited to the execution of computations specified by
base language programs. Thus our work on the base language is
strongly influenced by hardware concepts derived from the re-
quirements of programming generality [10].

We have chosen trees with shared substructures as our univer-
sal representation for information structures because we have
found attractive hardware realizations of memory systems for
tree-structured data. Jeffery Gertz [12] has considered how
such a memory system might be designed as a hierarchy of asso-
ciative memories. Also, the base language is intended to re-
present the concurrency of parts of computations in a way that
permits their execution in parallel. One reason for emphasizing
concurrency is that it is essential to the description of cer-
tain computations; for example, when a response is required to
whichever one of several independent events ig first to occur.
Furthermore, we believe that exploiting the potential con-
currency in programs will be important in realizing efficient
computer systems that offer programming generality. This is
because concurrent execution of program parts increases the
utilization of processing hardware by providing many activities
that can be carried forward while other activities are blocked,
pending retrieval of information from slower parts of the com-
puter system memory.

When the meaning of algorithms, expressed in some programming
language, has been specified in precise terms, we say that a
formal semantics for the language has been given. A formal
semantics for a programming language generally takes the form
of two sets of rules; one set being a translator, and the
second set being an interpreter. The translator specifies a
transformation of any well-formed program expressed in the

gram expressed in a second language -- the abstract language

of the definition. The interpreter eéxpresses the meaning of
programs in the abstract language by giving explicit directions
for carrying out the computation specified by any well-formed
abstract program.

It would be possible to specify the formal semantics of a pro-
gramming language by giving an interpreter for the concrete
programs of the source language; the translator is then the
identity transformation. Yet the inclusion of a translator in
the definition scheme has important advantages. For one, the
phrase structure of a programming language,viewed as a set of
strings on some alphabet,usually does not correspond well with
the semantic structure of programs. Thus, it is desirable to
give the semantic rules of interpretation for a representa-
tion of the program that more naturally represents its seman-
tic structure. Furthermore, lmany constructs present in source
languages are provided for convenience rather than as funda-
mental linguistic features. By arranging the translator to re-
place occurrences of these constructs with more basic con-
structs, a simpler abstract language is possible, and its inter-
preter can be made more readily understandable and, therefore,
more useful as a tool for the design and specification of

27

oL F N S e e Y

COMPUTATION STRUCTURES

computer languages and systems.

Our thoughts on the definition of programming languages in
terms of a base language are closely related to the formal
methods developed ac the IBM Vienna Labcratory [13] and which
derive from the ideas of McCarthy [14] and Landin [15].

For the formal semantics of programming languages, a general
model is required for the data on which programs act. We re-
gard data as consisting of elementary objects, and compound
objects formed by combining elementary objects into data
structures. Elementary objects are data items whose structure
in terms of simpler objects is not relevant to the description
of algorithms. For the purposes of this discussion, the class
E of elementary objects is

E=2zURUW
where
Z = the class of integers
R = a set of representations for real numbers
W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in
which elementary objects are associated with nodes, and each
arc is labelled by a member of a set S of selectors. We will
use integers and strings as selectors:

s=zUW

In the class of objects used by the Vienna group, the graphs
are restricted to be trees, and elementary objects are asso-
ciated only with leaf nodes. We have used a less restricted
class so an object may have distinct component objects that
share some third object as a common component.

Let E be a class of elementary objects, and let S be

a class of selectors. An object 1s a directed acyclic
graph having a single root node from which all other
nodes may be reached over directed paths. Each arc is
labelled with one selector in S, and an elementary
object in E may be associated with each leaf node.

An example of an object is shown in Fig. 8. Leaf nodes having
associated elementary objects are represented by circles with
the element of E written inside: Iutegers are represented by
numerals, strings are enclosed in single quotes, and reals

have decimal points. Other nodes are represented by solid
dots, with a horizontal bar if there is more than one emanating
arc.

The node of an object reached by traversing an arc emanating
from its root node is itself the root node of an object called
a component of the original object. The component object con-
sists of all nodes and arcs that can be reached by directed
paths from its root node.

28

e

e

} i o
L e

COMPUTATION STRUCTURES

e W

FIG, 8.

29

Rl s ST R AT e A A SR e MR I e - e T G AR

COMPUTATION STRUCTURES

Some of us prefer to generalize this class of objects in two
ways:

1) by permitting data values to be associated with any
node of the graph of a structure

and
2) by permitting the graph to contain directed cycles.

Whether to permit cycles in the structured data objects of the
base language is an important unresolved issue. Some consider-
ations bearing on this matter are discussed in a later para-
graph of this report.

Figure 9 shows how source languages would be defined in terms
of a common base language. Concrete programs in source languages
(L1 and L2 in the Figure) are defined by translators into
abstract programs of the base language. For this to be
effectively possible, the structure of abstract programs can-
not reflect the peculiarities of any particular source lan-
guage, but must provide a set of fundamental linguistic con-
structs in terms of which the features of these source lan-
guages may be realized. The translators themselves should be
specified in terms of the base language, probably by means of
a specialized source language. Formally, abstract programs in
the base language, and states of interpreter are elements of
the class of objects defined above.

The structure of states of the interpreter for the base lan-
guage is shown in Fig. 10. Since we regard the interpreter for
the base language as a complete specification for the func-
tional operation of a computer system, a state of the interpre-
ter represents the totality of programs, data, and control
information present in the computer system. The universe is

an object that represents all information present in the com-
puter system when the system is idle, that is, when no compu-
tation is in progress. The universe has data structures and
procedure structures as constituent objects. Any object is a
legitimate data structure; for example, a data structure may
have components that are procedure structures. A procedure
structure is an object that represents a procedure expressed

in the base language. It has components which are instructions
of the base language, data structures, or other procedure struc-
tures. So that multiple activations of procedures may be ac-
commodated, a procedure structure remains unaltered during its
interpretation.

The local structure of an interpreter state contains a local
structure for each current activation of each base language
procedure. Each local structure has as components, the local
structures of all procedure activations initiated within it.
Thus the hierarchy of local structures represents the dynamic
relationship of procedure activations.

The control component of an interpreter state is an unordered
set of sites of activity. A typical site of activity is

30

COMPUTATION STRUCTURES

ABSTRACT PROGRAMS
ONCRETE PROGRAMS
¢ IN LI IN BASE LANGUAGE

TRANS _ATOR
FOR L |

~.,

CONCRETE PROGRAMS
IN L2

STATES
INTERPRETER

TRANSLATOR
FOR L2

FIG. 9.

I]
'UNIVERSE' 'LOCAL STRUCTURE' 'CONTROL'

e— -

: \ " SITES OF
= \
,__I_\ | i ACTIVITY
DATA
STRUCTURE

; INSTRUCTION \

PROCEDYRE LOCAL
STRUCTURE P STRUCTURE L

,
|
r
\.

FI1G. 10.

31

COMPUTATION STRUCTURES

represented in the figure by an asterisk at an instruction of
procedure P and an arrow to the local structure I for some
activation of P. Since several activations of a procedure may
exist concurrently, there may be two or more sites of activity
involving the same instruction of some procedure, but designat-
ing different local structures. Also, within one activation

of a procedure, several instructions may be active concurrently;
thus asterisks on different instructions of a procedure may

have arrows to the same local structure.

Each state transition of the interpreter executes one instruc-
tion for some procedure activation, at a site of activity
selected arbitrarily from the control of the current state.
Thus the interpreter is a nondeterministic transition system.
In the state resulting from a transition, the chosen site of
activity is replaced by zero or more new sites of activity
according to the sequencing rules of the base language.

Interpretation of a procedure involves two objects, the proce-
dure structure P and an argument structure A. The argument
structure is formed by the calling procedure activation and
contains, as component objects, all information (other than P)
required by the activation of P. In particular, the actual
parameters of the procedure activation are components of A.
In this view of procedure execution, no meaning is given to
nonlocal references occurring within a procedure structure.
Thus no side effects of procedure executions are possible. Un-
less procedure P modifies part of its own procedure structure,
it defines an algebraic operation on the class of all objects.

A subject of major importance to us is the representation of
concurrent activities in the base language. Consideration of
concurrency brings in the issue of nondeterminacy -- the possi-
bility that computed results will depend on the relative tim-
ing with which the concurrent. activities are carried forward.
The ability of a computer user to direct the system to carry
out computations with a guarantee of determinacy is very im-
portant. Most programs are intended to implement a functional
dependence of results on inputs, and determinism is essential
to the verification of their correctness.

There are two ways of providing a guarantee of determinacy to
the user of a computer system. They are distinguished accord-
ing to whether or not the class of base language programs is
constrained through design of the interpreter to describe only
determinate computations. If this is the case, then any
abstract program resulting from compilation will be deterministic
in execution. Furthermore, if the compiler is itself a deter-
minate procedure, then each translatable source program repre-
sents a determinate procedure. On the other hand, if the de~
sign of the interpreter does not guarantee determinacy of
abstract programs, determinacy of source programs, when de-
sired, must be ensured by the translator.

E. Program Graphs

We are considering two approaches to represent the relationships

32

T R i gan o » oo Ry 2 P oo SRR R S e 2

COMPUTATION STRUCTURES

among instructions of a procedure structure:

1. A conventional form in which the instructions of each
procedure structure are selected by successive integers,
and instructions are executed sequentially except when a
conditional transfer of control directs execution to a
new instruction sequence.

In this form,concurrency is represented by fork instructions
where activity splits into twe concurrent streams and join
instructions where two streams of activity merge into one.

2. A data flow form in which execution of an instruction
is controlled by the availability of the data values re-
quired for its execution. For example, execution of an
add instruction would be enabled as soon as the values of
both operands have been computed.

Concurrency is inherent in a data flow representation since
the creation of a computed value may enable several instruc-
tions. The data flow representations we are investigating are
variations and extensiones of the program graphs introduced Ly
Rodriguez [16]. We shall illustrate our present thoughts re-
garding data flow representations by presenting program graphs
for several programs. Consider the program

begin
vVi=t-X; w:i=Xx-u
if v>wtheny :=w -2e¢elsey :=v + 3
if y >0 then z :=y 4+ 2 else z := 0

end

A conventional machine level representation would be:

begin
fork 41 23: W=-2 >y
t-x-+v 14: if y > 0 goto £5
goto 12 0+ 2z

L1: x = v »+w goto 26

22: join 5: y + 2 >z
it v > w goto 13 L16: end
v+3-+>y
goto 24

A program graph for this program is shown in Fig. 11. The
nodes ox the program graph include functional operators
drawn as circles, predicate operators drawn as diamonds and
two special node types, gate and merge, that perform control
functions. The links may be thought of as conveying tokens

33

COMPUTATION STRUCTURES

sareK]

774

+3

GATE

Fo MerGge L é:-.)
o
>0

y

!

GATE

F. MERGE |t t2
Yz
FIG. 11.

34

O T N P T) 2 TR T e ST E e IR 5 e o S O o Sy e

COMPUTATION STRUCTURES

between nodes of the diagram as in a Petri net. Here the
tokens have information associated with them. Tokens arriving
at or leaving functional operators, and those arriving at pre-
dicate operators convey values (numbers for example); these
links are drawn with small solid arrows. Tokens leaving a pre-
dicate operator convey decisions (true or false) to gate nodes
of the diagram; these links are drawn with open arrowheaus.

We assume the net operatws in a safe manner, that is, tokens

do not overtake one another, nor do they accumulate at nodes.
This may be ensured by acknowledge signals transmitted in the
reverse direction over each link. Thus a value link may be
represented in a Petri net by a pair of places: a place (drawn
as a square box) through which tokens with attached values

move from source node to destination, and an ordinary place
through which "empty" tokens are returned to the source node.
Decision links may be conveniently represented by three places
through which ordinary tokens (not bearing values) move. A
token arriving at the place labeled t signals a true decision;
a token arriving at the place labeled f signals a false deci-
sion.

When a link goes to two or more destinations, tokens are re-
plicated at each branch point so that tokens with identical
information are sent to each node. The branch points act like
wye modules, and await acknowledgment signals from each des-
tination hefore returning an empty token to the source node.

The gate and merge control nodes are needed so that decisions
made by predicate operators may affect the pattern of data

flow through functional operators of the program graph. A
T-gate node permits a value-bearing token to pass through for
each true decision received on the decision link. Whenever a
false decision arrives the value-bearing token is not forwarded.
In either case the gate node acknowledges both tokens received,
and when a gate forwards a token, it waits for acknowledgment
before forwarding another value-bearing token. The behavior
of a gate node is described in Fig. 12. The arrival of a true
decision leads to forwarding of a value token from link 1 to
link 2. Arrival of a false decision causes a value arriving
on link 1 to be acknowledged and discarded. An F-gate node

is identical to the T-gate except that the sense of the de-
cision is reversed.

A merge node permits values sent over its output link to
originate from different sources according to decisions made
during computation. The value sent over the output link is
forwarded from the T- or F-labeled input value link according
as the decision received is true or false. A Petri net for
the switch node is shown in Fig. 13.

Next we give an example showing how iterative programs can
be represented as program graphs:

35

i e e Ry g

COMPUTATION STRUCTURES

v a
S
2
FIG. 2.
-
fi a ot

FI1G, 13.

36

COMPUTATION STRUCTURES

y = X
v =0
while p(w,v) do
begin
vi= £(v); y = gly)
end
zZ =y
end
Noting that the two statements of the body of the iteration

may be performed concurrently, a conventional representation
would be similar to this:

begin
X >y
0+ vy
£1: if p(w,v)goto 24
fork 22
f(v) + v
goto 43
L2: gly) + v
£3: join
goto £l
24: y » z
end

A data flow version of the program is provided in Fig. 14,

Two of the merge nodes serve as the junctions through which
initial values and intermediate values flow to the functional
operators of the body of the whileé loop. The predicate opera-
tor requires one copy of the value of variable w for each

test of the predicate p. These copies are generated by the
center merge node, and the associated gate node. Initiation
of operation of the program graph requires arrival of a false
decision at the decision input link of each of the three
merge nodes, This is provided by the F-buff node which is a
buffer for decisions that sends a false decision as its initial
output, (Fig. 15.).

An important result of Suhas Patil [17]) concerning interconnec-
tions of determinate systems can be applied to program graphs
formed from the node types used in these two examples. We
conclude that any such program graph is a determinate repre-
sentation of a program. This class of program graphs is a
revision of the class studied earlier by Rodriguez, and is

37

COMPUTATION STRUCTURES

3943NW

31v9o
il

17914

—= 394H3W

(H TI_ 3943
4 . 1

L

38

COMPUTATION STRUCTURES

simpler as a result of our improved understanding of concurrent
activities. We expect that future developments in the theo-
retical study of Petri nets will contribute significantly to
the building of a satisfactory theory of program graphs.

Jack Dennis has formulated a class of program graphs suitable
for representing certain computations on structured data [10].
These program graphs were limited in that no provisions were
made for conditional execution of subgraphs or for iterative
computation. We expect to combine the concepts developed in
this class with those of Rodriguez to obtain a general class
of program graphs encompassing,say,all ALGOL 60 programs. Our
final example illustrates the form this class of program
graphs may take.

procedure (a,b,n)
beqin

step 1 through n do

i 1
y :=y + ali] x b[i]

The input data for this procedure will be represented by the
argument structure shown in Fig. 16, having components for the
three formal parameters of the procedure. In the program
graph shown in Fig. 18, a third kind of link is used and is
drawn as a heavy line with a solid arrowhead. Tokens passing
on these links convey access to objects. Execution is initiated
by arrival of a token at the root node P of the program graph.
This token carries access to an argument structure of the form
shown. Fcur new node types are used, (Fig. 17). The select

X node converts access to an object into access to the x-
component of the object. These nodes are used to obtain
access to the components of the argument structure. The
second form of select node uses the integer received on link

3 to select the componert object. The value node converts
access to an elementary object into the value of the object.
Finally, the assign node receives a data value on link 2 and
transforms the object conveyed on link 1 into an elementary
object having that value.

The repeat nodes in this program graph generate multiple copies
of tokens conveying access to the same object, in this case the
actual parameters of the scalar product procedure. One token
is sent over the output link for each true decision received

on the decision 1link. Acknowledgment is not given on the in-
put data link until a false decision is received, whereupon

the node resets and waits for the arrival of new data.

This program graph is determinate, yet we cannot guarantee the

determinacy of any program graph constructed from all node
types introduced here. We would like to find a set of program

39

COMPUTATION STRUCTURES

| F |2
— surr (o aye

FIG. 15,

FIG. 16.

[[[[

SELECT SELECT |e—om VALUE

ASSIGN

FIG. 17.

40

R:1

‘O14

COMPUTATION STRUCTURES

39¥3NW

! 'Ja [1o
| 394 3N OM@ 3INTVA 3INIvA
4 _ |
12373s -+ 1237138
_,V lv3id3ay e—{ 1V 3d3Yy
qd — od —
.D. -O.
123713s 12313s

|

|

e NG L i it

P

41

i > W

COMPUTATION STRUCTURES

graph node types and a condition on their interconnection, such
that the program graphs satisfying the condition are deter-
minate and include representations for a wide variety of pro-
grams.

Certain computations are more naturally expressed in data flow
terms than in conventional form. A typical example is a situa-
tion in which several independent activities generate and con-
sume units of data exchanged among themselves. Suppose a com-
putation is performed by two interconnected modules, (Fig. 19.).
Module 1 takes an initial value x from data cell a and gener-
ates a sequence of values y,, Y1r--+. ¥Yn that are forwarded to
module 2 through data cell b. Module 2 processes these values
as they become available, and, when all values have been pro-
cessed, puts a cumulative result z in cell c. Let the compu-
tations performed by modules 1 and 2 be described by the
following relations where f and g denote unspecified functions.

Yo = f(x) wy =10
¥, =ty Wy = 9(¥gswg)
Yk = f(Yk_l) Wk = g(yk_l,wk_l)

A program graph for this computation is shown in Fig. 20.

The predicate p is applied to each value Yi by both modules to
determine when the last value of a sequence has been processed:

]

ply;) = true, i =1, ..., k - 1

plyy) = false

Note that this program graph allows the two modules to act
concurrently and is formed simply by connecting together pro-
gram graphs that represent the two modules. Furthermore, the
incorporation of a first in-first out queue in the connecting
link would permit module 1 to continue generating values

even when module 2 has not had enough time to use up the pre-
vious values. The addition of queues does not require any
change in the representations of the modules. These properties
are not shared by other representations such as co-routines or
processes inter-communicating by means of semaphores. Further
discussion of these points appears in a recent paper by Jack
Dennis [18].

Program graphs are an attractive representation for procedures
expressed in the base language because the possibilities for
concurrent execution of instructions are exhibited in a natural
way. Program graphs represent many procedures in their maxi-
mum parallel form. Also, it is easy to impose constraints on

42

COMPUTATION STRUCTURES

- ———-

T T T T

4
Vi
=
-

m————

_— e e e e e e e e e e e — e — — — —

RS |
I
\
\

_-

— — — — — — — — m— — e e — e S e — — e e e e E— S — o m—

.._
I

!

_

ﬂ

_

_

ENCARIERE E— T@ F _
3 _

_

!

|

_

_

.

61 Old

d 31vO al
AV 1 N J943N ...u_|‘|:

43

COMPUTATION STRUCTURES

program graphs such that determinate execution is assured with-
out restricting the class of determinate procedures that can
be expressed. Finally, we have found that considering program
graphs as a machine level representation leads to interesting
concepts for the structure of highly parallel computers [10].

F. Translation of Block-Structured Languages

Many important programming languages for practical computation
are block structured; the texts of blocks and procedures are
nested, and identifiers appearing in one text may refer to vari-
ables declared in other texts. We do not plan to include in

the base language provision for directly representing reference
by a procedure to external objects. Therefore, we must show how
the execution of block-structured programs may be effected
through translation into the base language and execution by the
base language interpreter. The following discussion outlines
one way in which this may be accomplished -- a way that seems
attractive in view of the concepts of computer organization

we are investigating.

Consider the program shown in Fig. 21. This program has the
block structure shown; the main block P encloses a procedure
declaration P and a block Q. Upper case letters are used to
identify the texts of blocks or procedures.

If T is a text (block or procedure declaration) of a program,
let B(T) be the set of identifiers occurring in T that are
locally declared. Let X(T) be the set of identifiers occurring
in T, or any text nested within T, that refer to variables de-
clared outside T. For the above program we have

{y}
{f}

{x} B(Q)
{y} X(Q)

{y, z, £} B(F)
@ X(F)

B(P)
X(P)

Since non-local references are excluded in the base language,
we need a scheme for making variables a~zcessed by non-local
reference in the block-structured program accessible through
the argument structure in the base language representation.

We will discuss one method of doing this, details of which are
given in a recent paper by Jack Dennis [19]. To illustrate
this scheme consider the computation of apply p (4). As objects,
the procedure structure P and the local structure L(P) at the
beginning of the computation will be as shown in Fig. 22.
Texts F and Q are represented as components of the object rep-
resenting text P. The local structure for the activation of

P has one component for each identifier in the set B(F)QU X(F).

The first step is execution of the declaration of text F. This
gives the procedure identifier f a value called a closure of
the text F (Fig. 23). The C*T-component of the closure is
the text of procedure F and is shared with the procedure struc-
ture P. The C.E-component of the closure links identifiers in
X(F) to the value these identifiers have in the current proced-
ure activation. Thus the identifier y shares the value 4 with
y in L(P).

44

COMPUTATION STRUCTURES

P— p:= PROCEDURE(y)
BEGIN REAL v,z
FTF f == PROCEDURE(x)
BEGIN REAL x
y*=y+x
- END
P
Q4 gq: BEGIN REAL y F
y = |
APPLY f(y)
B END
2= y¢2
RET<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>